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Abstract 
Problem: Mass spectrometry (MS)-based metabolomics provides a unique biomarker signature 
that simultaneously captures environmental, genetic, and lifestyle snapshots of cellular and 
systemic metabolism. While advances in data acquisition have accelerated and expanded the 
readout of analyte MS features, conventional approaches for the confident identification and 
absolute quantitation of metabolites create bottlenecks in achieving high-throughput analysis. 
Solution: We report on the ability of Pyxis™ to rapidly infer metabolite identities and 
concentrations from raw MS data with exceptional accuracy. Pyxis achieves absolute 
quantitation by combining the signal from matrix-independent calibrators (StandardCandles™) 
with a machine learning (ML) approach, which obviates the requirement for stable isotope-
based calibration curves.  
Experiment: We developed a deep learning-based model that spans a broad dynamic range, 
covering diverse metabolic pathways. LC-MS metabolomics was performed on cultured cells 
and several human biofluids; metabolite identification and absolute quantitation analyses on the 
raw MS data were compared between Pyxis and the conventional method. Pyxis successfully 
identified and inferred the concentrations of the metabolite standards within minutes of data 
acquisition, including the sample types to which the model was naïve. The median slope 
between the two methods ranged between 0.76 and 1.38. Furthermore, we characterized 
metabolites of interest across related matrices (e.g., CHO cells and spent media) as a proof-of-
concept for interpreting study data. 
Take-home: Pyxis' comparable and rapid performance with unprocessed MS data relative to 
the laborious “gold standard” analytical chemistry approach showcases how the approach can 
revolutionize the application of metabolomic analyses. This ML tool requires no method 
development by the end user, and metabolite identities and absolute concentrations are 
automatically provided within minutes following data acquisition. Thus, Pyxis can cost-effectively 
facilitate biomarker and pathway analysis across biological discovery, drug development, and 
bioprocessing applications, regardless of the sample type or the researcher's experience. 
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Introduction 
The quantitative profiling of metabolites (i.e., metabolomics) represents the “end result” of 
genetics, environment, and metabolism and thus provides a valuable biological readout of an 
organism.1 Mass spectrometry (MS) has emerged as the method of choice for high-content 
metabolomics, given its ability to rapidly assess diverse small molecule chemistries over a wide 
dynamic range.2 Depending on the goal of a metabolomics study, investigators typically choose 
between a “targeted” approach to achieve absolute quantitation of a relatively short list of known 
compounds and an “untargeted” approach to characterize as many known and unknown 
biochemicals with relative abundance (i.e., fold-change differences among study groups).3  
In human biomarker metabolomics studies, a premium is placed on measuring known 
biochemicals with absolute concentrations. In this manner, study results are framed in 
interpretable biological pathways and reported in actionable reference levels defining healthy 
and disease states. The same is true for bioprocessing studies to optimize the quality yields of 
biological products, such as antibodies or cell therapies. Data reported in named metabolite 
concentrations reduce the need for the lengthy design of experiments (DoEs) to identify the 
optimal media component concentrations that enhance product yield.4  
Traditional MS methods for targeted metabolomics are laborious, costly, and time-consuming. 
Isotopically labeled pure standards must be purchased or synthesized for each metabolite under 
investigation. De novo synthesis significantly ratchets the costs and time to a cost often 
prohibitive for research labs. Following pure standard procurement, subsequent calibration 
curves must be generated, requiring the dedication of staff trained in analytical chemistry. 
Furthermore, researchers are limited to investigating the biochemical space included in the 
targeted list of metabolites, prohibiting hypothesis-generating study design and the opportunity 
for novel discovery. 
To overcome the limitations of targeted MS-based metabolomics, we developed Pyxis, which 
eliminates the need for stable isotope-labeled standards, calibration curve preparation, and 
traditional method development. Pyxis comprises a rapid machine-learning model that uses the 
signals from a small number of matrix-independent universal calibrators known as 
StandardCandles™. Data are analyzed by a standardized LC-MS method and processed 
through cloud-based software to annotate metabolite identities and absolute concentrations 
directly from the raw MS data.  
Pyxis encompasses key metabolites in central carbon metabolism and pathways for cell 
survival, proliferation, and various specialized functions. Importantly, Pyxis represents a 
generalized technology independent of MS instrumentation, reporting only named and 
quantifiable metabolites (i.e., those with a definable lower limit of quantitation, LLoQ). This 
approach avoids issues related to batch and sample matrix effects, facilitating comparisons 
across organisms, study endpoints, and laboratories.5  
In this study, we benchmark Pyxis’ ability to rapidly analyze several sample matrices, including 
those that the ML-based model had not previously been benchmarked on, against stable 
isotope-based methods. Furthermore, we present two matrix-specific case studies identifying 
relevant biomarkers in cell-based assays and human biofluids. 
 
 
 



 

  

 
  3  -       

METABOLITE IDENTIFICATION AND ABSOLUTE QUANTIFICATION USING MACHINE LEARNING 

Materials and Methods 
Metabolites were extracted from mammalian cells, cell culture media, dried blood spots, and 
human biofluids (cerebrospinal fluid, amniotic fluid, urine, saliva, and blood plasma) using an 
80% organic solution. Analyte concentration ranges were achieved using different sample-to-
solvent ratios (Table 1). 

 
Table 1. Sample matrices and sample-to-solvent ratio dilutions used to generate analyte concentration 
ranges. AF=Amniotic Fluid; CSF= Cerebrospinal Fluid; DBS= Dried Blood Spots; NIST 1950= Human 
plasma (NIST SRM 1950); Saliva= Human Saliva; Urine= Human Urine; CHO Cells= Chinese Hamster 
Ovary Cells; HPLM= Human plasma-like medium; CD DH44= Cell culture medium (CD DG44) 

 

 
Figure 1. Data acquisition and analysis steps used for both traditional and Pyxis–based absolute 
metabolite quantitation. Pyxis standardizes LC-MS, and reduces weeks of method development, 
calibration, and data analysis to minutes. 

An organic solution (methanol:acetonitrile:water, 50:30:20 v/v/v) spiked with 87 internal 
standards was used to precipitate proteins and isolate metabolites. Extracts were mixed with a 
StandardCandles™ solution to compare the traditional absolute quantification method and Pyxis 
(Figure 1). Calibration curves comprising mixtures of pure standards were prepared and 
analyzed in parallel. Four μl of each extract were analyzed on a Transcend LX-2 multichannel 
UHPLC system coupled to an Orbitrap Exploris 120 mass spectrometer (Thermo Fisher 
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Scientific). HILIC separation was achieved with an Atlantis Premier BEH Z-HILIC column (2.5 
mm, 2.1 x 50 mm; Waters Corporation) and a mobile phase consisting of 20 mM ammonium 
carbonate with 0.25% (v/v) ammonium hydroxide (pH=9.6, solvent A), and acetonitrile (solvent 
B). High-resolution MS1 spectra were acquired for 6.7 minutes in polarity switching mode.5  

Data Analysis 
For the analytical procedure referred to as the “conventional method,” TraceFinderTM software 
(Thermo Fisher Scientific) was used to calculate the absolute quantitation of analytes using 
internal standards and external calibration curves. Briefly, TraceFinder reports compound 
quantitation by integrating the area under the peak in the chromatogram for the respective 
monoisotopic molecular ion. In parallel, the raw MS files were analyzed with Pyxis (version 
1.4.1; Matterworks, Inc., Somerville, MA), and absolute metabolite concentrations were 
reported.  
 

Results 
Benchmarking Pyxis against the traditional stable isotope method 
The conventional method based on spiked-in isotopically labeled standards quantified the 87 
endogenous metabolites over a concentration range of 0.05 to 30 µM (Figure 2). These 
endogenous metabolite concentrations were used to benchmark Pyxis predictions among 27 
samples across nine sample matrices. Pyxis successfully quantified all 87 of these 
biochemicals, ranging from 23 metabolites in the fresh cell culture media to 73 that were present 
in the CHO cell pellets (Table 2).  
To determine how closely Pyxis predicted the metabolite absolute concentrations within each 
sample matrix, a linear regression analysis was applied, and Pyxis' results were compared with 
the concentrations determined using the conventional stable isotope results. A slope of 1 
indicates perfect 1:1 alignment, while an R2 of 1 represents perfect linear correlation. A 
summary of the analysis is presented in Table 2. Overall, Pyxis predictions achieved median 
slopes ranging from 0.76 for urine to 1.38 for dried blood spots and median R2 ranging from 
0.60 for dried blood spots and 0.87 for amniotic fluid (Figure 3A).  
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Figure 2. Analyte concentration range (µM) as determined by the conventional method. 

A diverse array of analytes representing multiple major biochemical pathways were chosen to 
demonstrate Pyxis’ flexibility. The selected metabolites were grouped into nine primary 
pathways, whereby metabolite detection above the LoQ varied depending on the sample matrix. 
Pyxis exhibited high accuracy in identifying and quantitatively determining metabolites across 
the different metabolic pathways (Figure 3B).   

 
Table 2. Number of metabolites and linear regression analysis for Pyxis concentration compared to the 
conventional method concentration. AF=Amniotic Fluid; CSF= Cerebrospinal Fluid; DBS= Dried Blood 
Spots; NIST 1950= Human plasma (NIST SRM 1950); Saliva= Human Saliva; Urine= Human Urine; CHO 
Cells= Chinese Hamster Ovary Cells; HPLM= Human plasma-like medium; CD DH44= Cell culture 
medium (CD DG44) 
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Figure 3. Overview of Pyxis predictions versus the conventionally determined analyte concentrations 
among (A) nine evaluated matrices and (B) nine grouped metabolic pathways. Sample matrices are 
colored according to the legend.  
*Note the analyte concentrations of “Neurotransmitters & Hormones” are less abundant and thus an order 
of magnitude lower than the indicated axes. 
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These results demonstrate that Pyxis can annotate analyte concentrations in several human 
biofluids, CHO cells, and cell growth medium in minutes without tedious and expensive stable 
isotope-based methodology. Pyxis offers the absolute quantitation of many diverse metabolites 
and delivers results from a sample set within days rather than weeks. A comparable 
conventional targeted quantitative method costs an order of magnitude more and can take a 
month or longer to deliver results.  

Pyxis utility in monitoring cell growth and bioprocessing optimization 
Biotherapeutic production increasingly relies on cells to synthesize monoclonal antibodies 
(mAbs) or adoptive cell transfer therapies such as CAR-T. Metabolomics represents an 
attractive biomarker analysis platform due to metabolism's critical role in healthy cell growth and 
subsequent optimization of product yield.6 Conversely, using metabolomics to monitor and 
recommend DoE strategies can be counterintuitive. For cellular monitoring, an untargeted 
approach covering as many metabolic pathways as possible is ideal, yet adjustments to cell 
culture media or metabolic engineering strategies to overcome bottlenecks require the absolute 
concentrations reported by targeted methodology.  
Pyxis was designed, in part, to speedily offer researchers a “holy grail” solution to bioprocess 
engineering: the ability to achieve broad biochemical coverage with absolute concentration. In 
our study, Pyxis identified 77 metabolites in CHO cells across the nine pathways also matched 
with the conventional method using stable isotope standards, including central carbon, amino 
acid, fatty acid, and nucleotide metabolism (see Figure 3B). These identifications and predicted 
concentrations were in good agreement with the conventional method, achieving a median 
slope and median R2 of 0.81 and 0.87, respectively (Table 2).  
Purine metabolism is crucial in CHO and other cellular functions, providing essential building 
blocks for DNA, RNA, and ATP synthesis. The purines adenine and guanine can be synthesized 
de novo from metabolic precursors or recycled via the salvage pathway using hypoxanthine and 
inosine intermediates. For antibody production, manipulating the salvage pathway can be 
accomplished by altering levels of hypoxanthine and thymidine, which is preferable over de 
novo synthesis to conserve energy demand and efficiently utilize precursors for other 
processes.6  
Here, hypoxanthine, inosine, and other purine and pyrimidine metabolic intermediates, including 
adenosine-5-diphosphate (ADP), adenosine triphosphate (ATP), and guanosine 
monophosphate (GMP), were well annotated using Pyxis with good concentration agreement 
with the conventional method (Figure 4A). Hypoxanthine and thymidine quantitation in fresh CD 
DG44 medium agreed with the concentrations calculated using the conventional method 
(Figure 4B). Therefore, monitoring CHO cell purine metabolism status alongside fresh and 
spent media for process optimization is achievable with Pyxis. 
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Figure 4. Linear regression analysis for purine metabolism in (A) CHO cells and (B) CD DG44 cell 
medium. Hypoxanthine (purple), inosine (green), ADP (denim), ATP (peach), and GDP (magenta) are 
indicated with associated linear regression fit statistics. 

Given the breadth of metabolite coverage and accuracy of predicted concentrations, metabolite 
identification and quantification with Pyxis represents a fast, reliable, and viable alternative to 
traditional targeted metabolomics-based monitoring of bioprocesses without the need for 
analytical chemistry training and specialization. Thus, any bioprocess lab with MS capabilities or 
collaborators looking to achieve scale-up and yield optimization should consider adopting the 
Pyxis methodology for rapid and accurate cell monitoring.  

Pyxis utility in identifying biomarkers in human health studies 
Metabolites uniquely report on genetic function and environmental influences, including diet, 
microbiome, and exposure.7 Like bioprocessing, diverse coverage of biochemical space offered 
by traditional untargeted metabolomics affords translational scientists, clinicians, and genetic 
epidemiologists the best opportunity to identify biomarkers of interest in human populations. 
While relative abundance measurements can provide clues as to the significance of potential 
biomarkers, they necessarily require a control or time-zero cohort for comparison, which is not 
always available in a research study, drives up costs, and extends timelines. Absolute 
concentrations of metabolite biomarkers hasten their adoption in translational and clinical 
medicine. For example, “normal” concentration windows of blood metabolic markers (e.g., 
glucose, bilirubin, creatinine, etc.) and complete blood counts drive their clinical utilization and 
further enable individual health assessments.8,9 
We evaluated Pyxis' ability to identify and quantify metabolites in several human biospecimen 
types routinely used for biomarker studies (Table 2). All 20 nominal amino acids were quantified 
with Pyxis among all the human matrices. To simplify the presentation of the results, we focused 
on amino acids quantified among standard reference plasma, amniotic fluid, and urine.   
Amino acids and their secondary metabolites inform on nutritional status, and abnormal levels 
are associated with several chronic and cardiovascular diseases. For example, higher 
circulating levels of glycine may be protective against developing coronary heart disease and 
insulin resistance, the latter of which may lower the risk of type 2 diabetes.10,11 Pyxis-predicted 
absolute concentrations of glycine were in good agreement with the conventional method 
among the standard reference plasma, amniotic fluid, and urine sample matrices (Figure 5A),  
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Tryptophan is an essential amino acid that must be consumed in the human diet. The 
metabolism of tryptophan to kynurenine and melatonin by human enzymes and indole-related 
catabolites by bacteria are well-documented mechanisms involved in immune modulation, sleep 
cycles, and microbiome-potentiated health effects.12,13 For standard reference plasma, amniotic 
fluid, and urine biospecimens, Pyxis predicted the concentration dilutions of tryptophan (Figure 
5B) and kynurenine (Figure 5C) in good agreement with conventional method data. Kynurenine 
levels were at relatively low abundance, particularly in amniotic fluid, yet Pyxis robustly 
quantified the amino acid in every dilution of these three matrices. 
 

 
Figure 5. Linear regression analysis for selected amino acids in human biofluids. (A) Glycine, (B) 
Tryptophan, (C) Kynurenine. Amniotic fluid (blue), standard reference plasma (red), and urine (orange) 
samples are indicated with associated linear regression fit statistics. 

Taken together, these results indicate that the Pyxis methodology represents a feasible avenue 
for determining the levels of physiologically essential biochemicals in human biomarker studies. 
 

Conclusions 
In this study, we evaluated the ability of Pyxis, an ML-based cloud platform, to annotate 
metabolite identity and absolute concentrations in diverse sample matrices using conventional 
stable isotope-labeled standard methodology as a benchmark. Overall, Pyxis successfully 
annotated the identity and concentrations of the metabolites in all nine sample types measured, 
including human-derived matrices, cell pellets, and fresh cell media, most of which the model 
was naïve. The predicted concentrations were in good agreement with the conventional method 
based on laborious, technically demanding, and expensive isotope labeling and data 
processing. Furthermore, the Pyxis metabolite identifications and concentrations were available 
within minutes of uploading the raw data to the platform.  
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Pyxis' annotated metabolite identities and concentrations offer a novel and rapid metabolomics 
workflow applicable to various biomedical applications, including bioprocess optimization, drug 
discovery, and translational and clinical biomarker studies. Pyxis provides rapid, cost-effective, 
and actionable biomarker insights covering diverse biochemical pathways without needing 
isotopically labeled individual standards or expertise in analytical chemistry methodology.  
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